MMAT5010 Linear Analysis (2024-25): Homework 5 Deadline: 8 Mar 2025

Important Notice:

- **♣** The answer paper must be submitted before the deadline.
- \blacklozenge The answer paper MUST BE sent to the CU Blackboard.
 - 1. Let c_{00} be the finite sequence space. Assume that c_{00} is endowed with the $\|\cdot\|_{\infty}$ -norm. Define a linear map $T: c_{00} \to c_{00}$ by $Tx(k) := \frac{1}{k}x(k)$ for $x \in c_{00}$ and k = 1, 2...
 - (a) Find ||T||.
 - (b) Show that T is a linear isomorphism, that is T is a linear bijection, and the inverse T^{-1} is unbounded.
 - 2. Let $(X, \|\cdot\|)$ be a normed space. Assume that $T: X \to X$ is a linear isomorphism.
 - (a) For each $x \in X$, put $||x||_0 := ||Tx||$. Show that $||\cdot||_0$ is a norm on X.
 - (b) Show that the inverse T^{-1} is bounded if and only if there is c > 0 such that $c||x|| \le ||Tx||$ for all $x \in X$.
 - (c) The norms $\|\cdot\|$ and $\|\cdot\|_0$ are equivalent if and only if T and T^{-1} both are bounded.

NOTE: Question 1 (b) above shows us that a linear isomorphism T is bounded but the inverse T^{-1} may not be bounded in general.

* * * End * * *